Publié sur Laisser un commentaire

Des planchers en bois « dopés » au silicium produisant de l’électricité à chaque pas

Des chercheurs suisses ont conçu un plancher en bois expérimental générant de l’énergie lorsqu’on marche dessus. Imprégné d’ions de silicium et de métal, il produit suffisamment d’énergie avec les pas humains pour alimenter des LED ou de petits dispositifs électroniques. En améliorant le rendement et en travaillant sur l’industrialisation du système, les chercheurs espèrent qu’il puisse un jour constituer une source d’énergie renouvelable supplémentaire à intégrer aux habitations.

Certains matériaux peuvent générer une charge électrique lorsqu’ils entrent en contact (puis sont séparés) avec un autre matériau du même type. Le phénomène en question est appelé « effet triboélectrique ». Les électrons sont transférés d’un objet à un autre et génèrent ainsi une charge. Les matériaux qui ont tendance à « donner » des électrons sont dits tribopositifs, et ceux qui ont tendance à en recevoir sont dits tribonégatifs.

Guido Panzarasa, de l’ETH Zürich, en Suisse, et ses collègues ont découvert que, bien que le bois se situe au milieu de ce spectre et ne laisse pas facilement passer les électrons, il peut être modifié pour générer des charges plus importantes.

Modifier les propriétés électriques du bois

L’équipe a infusé un panneau de bois avec du silicium, qui capte les électrons au contact d’un objet. Un second panneau a été infusé avec des nanocristaux d’imidazolate zéolitiques (ZIF-8), un composé contenant des ions métalliques et des molécules organiques — ces cristaux ont tendance à perdre des électrons. Ils ont appelé ce processus d’imprégnation « fonctionnalisation ».

L’équipe a constaté que ce traitement rendait un dispositif contenant les deux panneaux de bois 80 fois plus efficace que le bois standard pour transférer les électrons, ce qui signifie qu’il était suffisamment puissant pour alimenter des ampoules LED lorsque des pas humains compressaient le dispositif et mettaient les deux panneaux de bois en contact. Le plancher de bois ainsi obtenu devient un nanogénérateur triboélectrique (TENG). Les détails ont été publiés dans la revue Matter.

« Le défi consiste à fabriquer du bois capable d’attirer et de perdre des électrons. L’approche de la fonctionnalisation est assez simple et peut être mise à l’échelle industrielle. Ce n’est qu’une question d’ingénierie », a déclaré Panzarasa.

L’équipe a constaté qu’un échantillon de 2 centimètres sur 3,5 centimètres soumis à une compression de 50 newtons — un ordre de grandeur inférieur à la force d’un pas humain — était capable de générer 24,3 volts. Un échantillon plus grand, de la taille d’une feuille de papier A4, a pu produire suffisamment d’énergie pour alimenter des lampes LED domestiques et de petits appareils électroniques tels que des calculatrices. Panzarasa et son équipe espèrent maintenant mettre au point des revêtements chimiques pour le bois qui soient plus écologiques et plus faciles à fabriquer.

« Nous démontrons l’applicabilité de notre TENG en bois fonctionnalisé (FW-TENG) dans les bâtiments intelligents en l’utilisant pour alimenter des lampes domestiques, des calculatrices et des fenêtres électrochromiques », concluent les chercheurs dans leur document. Une innovation prometteuse, sachant que les applications présentées ici ne sont qu’un début.

Source : Matter

Publié sur Laisser un commentaire

Y a-t-il vraiment un intérêt à placer des panneaux photovoltaïques sur l’eau ?


Yohan Demeure, rédacteur scientifique

Au premier abord, le fait de poser des panneaux solaires sur l’eau peut sembler plutôt étrange. En réalité, les fermes photovoltaïques flottantes ont plusieurs avantages, dont l’économie de surface terrestre qu’il serait alors possible d’utiliser autrement.

Une économie d’espace

Le 14 juillet 2021, l’agence de presse Reuters relayait l’inauguration d’une nouvelle installation solaire géante à Singapour. Mise en place par la société Sembcorp, cette ferme photovoltaïque flottante dont la taille est impressionnante – 45 terrains de football – aura une mission très précise : fournir l’intégralité de l’énergie dont ont besoin toutes les centrales de traitement d’eau de la cité-État de 5,7 millions d’habitants. Dans un futur proche, Singapour devrait installer quatre autres centrales du même type.

Il faut dire que cette technologie est intéressante pour plusieurs raisons. La plus évidente est qu’en installant les panneaux sur l’eau, ces derniers n’occupent pas d’espace sur la terre ferme. Or, le solaire est habituellement très gourmand en terrain. En effet, s’il est possible d’installer des panneaux sur les toits des habitations, le rendement est bien meilleur lorsqu’il est question de plus larges surfaces. Différents projets de parcs solaires géants terrestres ont ainsi déjà vu le jour ces dernières années, par exemple en Australie et en Chine.

Dans le cas des pays dont le territoire est plutôt limité, installer des panneaux solaires peut devenir un véritable problème. Singapour a donc fait le choix d’une installation flottante et désire poursuivre dans cette voie. En Europe, certains pays comme l’Allemagne et les Pays-Bas s’intéressent aussi à ce genre de ferme solaire.

Un meilleur rendement

Si les pays limités en surface – et ayant un accès à la mer ou à un grand lac – peuvent également profiter du faible impact carbone et du coût de plus en plus compétitif de l’énergie solaire, les pays ayant un grand territoire pourraient également trouver un intérêt à installer des fermes solaires flottantes. En effet, l’objectif serait alors de ne pas monopoliser des surfaces qui pourraient servir autrement. Il peut par exemple s’agir de surfaces agricoles ou encore d’espaces naturels à valoriser et protéger.

Une autre raison peut être très attractive : leur rendement. En janvier 2021, des chercheurs singapouriens et néerlandais ont publié une étude affirmant que les fermes solaires flottantes ont un meilleur rendement que leurs équivalents terrestres. Il faut savoir que lorsque les panneaux chauffent, leurs performances diminuent. Or, la proximité de l’eau assure un meilleur refroidissement de l’installation et donc un maintien du niveau des performances.

Néanmoins, la conception des panneaux ainsi que leur future localisation ne doivent absolument pas être pris à la légère. En effet, ce type d’installation, en cas de mauvais calibrage, pourrait avoir un impact non négligeable sur la faune et la flore aquatiques. Mais une étude britannique parue en mai 2021 affirme que si les projets de fermes sont bien pensés, ceux-ci peuvent au contraire avoir un effet positif sur l’environnement. Les chercheurs affirment avoir mené de premières simulations montrant que le changement de température de l’eau induit par ces installations pourrait peut-être compenser celui causé par le réchauffement climatique.

Publié sur Laisser un commentaire

Parcs solaires flottants «floatovoltaïques»

Les panneaux de silicone deviennent de jour en jour moins chers et plus efficaces. Selon les experts, si des panneaux photovoltaïques sont placés sur des réservoirs et d’autres plans d’eau, ils offrent une efficacité encore plus grande ainsi qu’une pléthore d’autres avantages.

Les «floatovoltaïques» sont des systèmes d’énergie solaire photovoltaïque créés pour flotter sur des réservoirs, des barrages et d’autres plans d’eau.

Fermes solaires flottantes

Les fermes solaires flottantes peuvent générer d’énormes quantités d’électricité sans utiliser de terres ou de biens immobiliers précieux. Les coûts d’installation des panneaux photovoltaïques flottants sont inférieurs à ceux des panneaux photovoltaïques terrestres. En outre, des recherches ont montré que la production d’énergie des panneaux solaires flottants est supérieure jusqu’à 10% en raison de l’effet de refroidissement de l’eau.

En plus de produire de l’énergie solaire propre, les fermes solaires flottantes peuvent contribuer à la gestion de l’eau. Ils réduisent la perte d’eau par évaporation car ils limitent la circulation de l’air et bloquent la lumière du soleil à la surface de l’eau. En outre, les fermes solaires flottantes empêchent la production d’algues nocives, ce qui réduit les coûts de traitement de l’eau. De plus, l’eau en dessous maintient les panneaux solaires propres et minimise le gaspillage d’énergie.

En 2008, le premier système commercial de panneaux flottants de 175 kWh a été installé en Californie dans la cave Far Niente de Napa Valley.

Publié sur Laisser un commentaire

Un supercondensateur qui fait concurrence aux batteries

Un supercondensateur doté d’une densité de stockage de l’électricité supérieure à des batteries a été mis au point par des chercheurs de l’Université centrale de Floride (UCF).

Le supercondensateur mince et flexible développé à l’Université de Floride bénéficie d’une forte densité d’énergie et de puissance. Crédit: Université centrale de Floride centrale

Les chercheurs de l’UCF ont utilisé des feuilles de quelques atomes d’épaisseur (ou « 2D ») de sulfure de tungstène (WS2), un métal de transition, pour recouvrir en plusieurs couches, comme des feuilles enroulées autour d’un axe, des fils nanométriques (« 1D ») conducteurs. Tandis que le nano-fil facilite le transfert rapide des électrons, les couches de WS2 ont la fonction de stocker les électrons à leur surface. Le nombre important de couches enroulées permet d’obtenir une surface totale importante à même de stocker beaucoup d’électrons autour du fil. Le nombre total de ces nanostructures détermine ensuite la capacité de stockage globale du dispositif. Si le principe était connu depuis plusieurs années, aucune équipe n’était parvenue jusqu’ici à trouver un procédé chimique simple pour réaliser facilement cette intégration des feuilles sur les nanofils conducteurs.  

Les supercondensateurs se distinguent des batteries par le fait qu’ils stockent les électrons sous l’effet d’un champ électrostatique à la surface du matériau adéquat, alors que les batteries classiques font intervenir des réactions électrochimiques. Cette propriété permet aux supercondensateurs de se recharger ou de se décharger beaucoup plus rapidement qu’une batterie, et leur offre, par ailleurs, une durée de vie (nombre de cycles sans dégradation des propriétés) beaucoup plus importante : dans les batteries, les électrodes se dégradent à force de répétition des réactions chimiques. En revanche, les supercondensateurs disposent généralement d’une très faible densité de stockage car les électrons ne sont stockés qu’à la surface, c’est pourquoi ils ne sont pas utilisés aujourd’hui dans nos smartphones et autres appareils mobiles.

Le supercondensateur mis au point par l’équipe aurait, en revanche, une densité de stockage bien supérieure, soit 3 200 mAh par gramme contre seulement 300 mAh pour les batteries classiques et une durée de vie supérieure à 30 000 cycles, contre 1500 pour les batteries. La technologie n’est pas prête à la commercialisation, précise l’équipe, mais la preuve de concept de leur « recette » de fabrication est faite et fera l’objet de brevets visant à atteindre des contraintes de production industrielle. 

Publié sur Laisser un commentaire

Les batteries lithium-ion existent en peinture…

Une nouvelle ère s’ouvre-t-elle pour les batteries lithium-ion ? Peut-être grâce à des chercheurs qui viennent de présenter des piles rechargeables peintes sur à peu près n’importe quelle surface. Le potentiel de cette invention sera gigantesque… lorsque certaines contraintes auront disparu.

Sans les batteries lithium-ion, nos téléphones et ordinateurs portables seraient bien plus volumineux, tout en ayant une autonomie diminuée. Ces sources d’énergie rechargeables ont évolué de manière importante ces dernières années, en capacités et en tailles.

Cependant, un élément n’a pas changé : leur forme. L’utilisation de batteries cylindriques ou rectangulaires impose d’importantes contraintes aux designers. De nombreuses études sont donc menées pour s’affranchir de cette dernière limitation. Pourquoi, par exemple, ne pas essayer de les transformer en revêtements, à l’image de ce qui se fait pour certaines cellules photovoltaïques ? Cette solution permettrait ainsi de construire de nouveaux appareils électroniques dépourvus de compartiment à piles.

98eb3147e4_50019223_batterie-peinture-scientific-reports

Durant les tests, des batteries Lithium-ion ont été « peintes » sur du verre (a), de l’acier (b), de la céramique (c). Les tuiles de céramique ont parfois été recouvertes en plus d’un panneau photovoltaïque permettant de recharger le dispositif (d). Neuf tuiles ont également été assemblées pour alimenter 40 Led (e). Des diodes électroluminescentes ont brillé grâce à une alimentation électrique déposée sur du plastique (f) ou sur un mug en céramique (g). Dans ces deux derniers cas, la forme du support n’était pas plane, ni même lisse. © Singh et al. 2012, Scientific Reports 

Une batterie lithium-ion se compose, d’une manière simplifiée, d’une série de couches prises en sandwich. Les cathodes et les anodes sont séparées par un électrolyte, contenant notamment des ions, et par une membrane qui leur est perméable. Le tout est coincé entre deux collecteurs de courant généralement composés d’aluminium (côté cathode) et de cuivre (côté anode). Les piles cylindriques sont formées d’un enroulement de ces couches autour d’un axe vertical.

Une équipe de chercheurs menée par Nellam Singh, de la Rice University aux États-Unis, est parvenue à rendre liquides les constituants de ces cinq couches. Ils ont ensuite fabriqué des batteries sur différentes surfaces en pulvérisant ces composants successivement l’un sur l’autre à l’aide d’un pistolet à peinture ! Leur invention, brevetée, est présentée dans la revue Scientific Reports.

Des batteries en peinture pour des maisons autonomes ?

Les essais ont été réalisés sur des tuiles de céramique, des plaques de verre ou des feuilles d’acier inoxydable. La première couche, le collecteur de courant de la cathode, se compose notamment de « hypo SWCNT », un matériau créé par la Rice University qui contient des nanotubes de carbone. Le deuxième revêtement, la cathode, est quant à lui fait de dioxyde de cobalt et de lithium (LiCoO2). Il a été recouvert par un mélange de polymères projeté dans de l’acétone. L’anode a ensuite été « peinte » grâce à une pulvérisation de dioxyde de titane et de lithium (Li4Ti5O12). Finalement, le tout a été recouvert de cuivre, le collecteur de courant de l’anode également utilisé dans une batterie classique. Toutes ces opérations ont été menées sur des matériaux maintenus à une température de 90 à 120 °C. Après leur fabrication, les batteries ont été « séchées » dans un environnement saturé en argon puis activées grâce à un bain dans une solution d’électrolyte.

Neuf tuiles de céramique « rechargeables » ont ensuite été montées en parallèle. L’une d’entre elles a en plus été recouverte d’un panneau photovoltaïque capable de fournir le courant à emmagasiner (capacité de stockage d’environ 0,65 Wh, soit 6 Wh par m2 de surface enduite). Ce dispositif a été utilisé pour faire briller 40 diodes électroluminescentes, indiquant le mot « rice », pendant 6 heures (à 40 mA) grâce à une tension de 2,4 V.

Cette invention a un potentiel considérable. Des maisons seront peut-être un jour totalement recouvertes de batteries sans que cela ne choque d’un point de vue esthétique. Alimentées par des panneaux solaires, ces batteries permettront alors à nos habitations de devenir énergétiquement autonomes. Cependant, de très nombreuses étapes restent à franchir avant d’en arriver là. Car le procédé de fabrication souffre de nombreuses faiblesses : les électrolytes liquides sont toxiques, inflammables et potentiellement corrosifs. De plus, la fabrication des cellules nécessite un environnement dépourvu d’oxygène (remplacé par l’argon) et d’humidité. L’équipe de Nellam Singh travaille maintenant pour s’affranchir de tous ces problèmes.

Publié sur Laisser un commentaire

Courant alternatif (CA) vs courant continu (CC)

Courant alternatif (AC)

Le courant alternatif décrit le flux de charge qui change périodiquement de direction. Par conséquent, le niveau de tension s’inverse également avec le courant. Le courant alternatif est utilisé pour alimenter les maisons, les immeubles de bureaux, etc.

Génération de courant alternatif

Le courant alternatif peut être produit à l’aide d’un dispositif appelé alternateur. Cet appareil est un type spécial de générateur électrique conçu pour produire du courant alternatif. Une boucle de fil est filée à l’intérieur d’un champ magnétique, qui induit un courant le long du fil. La rotation du fil peut provenir de plusieurs moyens : une éolienne, une turbine à vapeur, une turbine à vapeur, l’eau qui coule, etc. Comme le fil tourne et entre périodiquement dans une polarité magnétique différente, la tension et le courant alternent sur le fil.

Formes d’onde

Le courant alternatif peut se présenter sous plusieurs formes, à condition que la tension et le courant soient alternatifs. Si nous connectons un oscilloscope à un circuit à courant alternatif et traçons sa tension dans le temps, nous pouvons voir un certain nombre de formes d’ondes différentes. Le type de CA le plus courant est l’onde sinusoïdale. Dans la plupart des maisons et des bureaux, le courant alternatif a une tension oscillante qui produit une onde sinusoïdale.

Applications

Les prises de courant à la maison et au bureau sont presque toujours en courant alternatif. En effet, il est relativement facile de produire et de transporter du courant alternatif sur de longues distances. A haute tension (plus de 110 kV), les pertes d’énergie dans le transport de l’énergie électrique sont moindres. Des tensions plus élevées signifient des courants plus faibles, et des courants plus faibles signifient moins de chaleur générée dans la ligne électrique en raison de la résistance. Les transformateurs permettent de convertir facilement le courant alternatif en haute tension et d’en convertir les tensions élevées.

AC est également capable d’alimenter des moteurs électriques. Les moteurs et les générateurs sont exactement le même appareil, mais les moteurs convertissent l’énergie électrique en énergie mécanique (si l’arbre d’un moteur est filé, une tension est produite aux bornes ! Ceci est utile pour de nombreux gros appareils électroménagers comme les lave-vaisselle, les réfrigérateurs, et ainsi de suite, qui fonctionnent sur secteur.

Courant continu (DC)

Le courant continu est un peu plus facile à comprendre que le courant alternatif. Plutôt que d’osciller d’avant en arrière, le courant continu fournit une tension ou un courant constant.

Le courant continu peut être généré de plusieurs façons :

  • Un générateur de courant alternatif équipé d’un dispositif appelé « commutateur » peut produire du courant continu.
  • Utilisation d’un dispositif sûr appelé « redresseur » qui convertit le courant alternatif en courant continu
  • Les batteries fournissent du courant continu, qui est généré par une réaction chimique à l’intérieur de la batterie.
  • Pour reprendre notre analogie avec l’eau, DC est similaire à un réservoir d’eau avec un tuyau à l’extrémité.

Applications

Tout ce qui s’écoule d’une batterie, se branche au mur avec un adaptateur secteur ou utilise un câble USB pour l’alimentation dépend du courant continu.

Exemples d’électronique à courant continu :

  • Téléphones portables
  • Téléviseurs à écran plat (le courant alternatif entre dans le téléviseur, qui est converti en courant continu)
  • Lampes de poche
  • Eclairage pour la table
  • Véhicules hybrides et électriques

 


Votre entière satisfaction est notre priorité

logo-centrer

Les VRAIS experts pour vous servir à Lévis sur la rive-sud de Québec
À 1 minute des ponts